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Abstract 
Traditionally, in order to estimate the production potential at a new, prospective field site via simulation 
or material balance, one needs to collect various forms of expensive field data and/or make assumptions 
about the nature of the formation at that site. Decline curve analysis would not be applicable in this 
scenario, as producing wells need to pre-exist in the target field. The objective of our work is to make 
first-order forecasts of production rates at prospective, undrilled sites using only production data from 
existing wells in the entire play. This is accomplished through co-kriging of decline curve parameter 
values, where the parameter values are obtained at each existing well by fitting an appropriate decline 
model to the production history. Co-kriging gives the best linear unbiased prediction of parameter values 
at undrilled locations, and also estimates uncertainty in those predictions. Thus, we can obtain production 
forecasts at P10, P50, and P90, as well as calculate EUR at those same levels, across the spatial domain 
of the play. 

To demonstrate the proposed methodology, we used monthly gas flow rates and well locations from 
the Marcellus shale gas play in this research. Looking only at horizontal and directional wells, the gas 
production rates at each well were carefully filtered and screened. Also, we normalized the rates by 
perforation interval length. We kept only production histories of 24 months or longer in duration to ensure 
good decline curve fits. Ultimately, we were left with 5,637 production records. Here, we chose Duong’s 
decline model to represent production decline in this shale gas play, and fitting of this decline curve was 
accomplished through ordinary least square regression. 

Interpolation was done by universal co-kriging with consideration to correlate the four parameters in 
Duongs’ model, which also showed a linear trend (the parameters show dependency on the x and y spatial 
coordinates). Kriging gave us the optimal decline curve coefficients at new locations (P50 curve), as well 
as the variance in these coefficient estimates (used to establish P10 and P90 curves). We were also able to 
map EUR across the study area. Finally, the co-kriging model was cross-validated with leave-one-out 
scheme, which showed significant but not unreasonable error in decline curve coefficient prediction.  

We forecasted potential gas production in the study area using co-kriging. Heat maps of decline curve 
parameters as well as EUR were constructed to give operators a big picture of the production potential in 
the play. The methods proposed are easy to implement and do not require various expensive data like 
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permeability, bottom hole pressure, etc., giving operators a risk-based analysis of prospective sites. We 
also made this analysis available to the public in a user-friendly web app. 

 
Introduction 
The unconventional shale gas revolution has played an important role in supplying the increasing energy 
demand world-wide and has brought people many benefits such as national energy security and job 
creation. However, the development of unconventional gas can be substantially risky because of the 
difficulty characterizing the reservoir and understanding how the reservoir behaves. Unlike conventional 
reservoirs, unconventional shale always has complicated transport mechanism and ultra-low permeability, 
while the induced hydraulic fractures act as additional factors in evaluating the well performance 
(Clarkson et al., 2012). As a result, effective methods that can forecast the unconventional gas production 
are critical for the risk control. 

Decline curve analysis (DCA) is one of the basic tools used in production rate forecasting and recovery 
estimation (Bhattacharya and Nikolaou, 2013). Arps’ hyperbolic rate-time equation (Arps, 1945) which 
has been widely applied in conventional play can also capture the feature of shale gas rate decline with its 
hyperbolic decline constant “b” sometimes greater than unity. Besides, the numerical simulation is another 
approach to quantify the analysis but the unique features, such as gas desorption, of unconventional shale 
must be taken into consideration. Some authors (Cipolla et al., 2010) addressed issues in techniques of 
conventional production analysis when they are applied to unconventional reservoirs. Anderson and Liang 
(2011) developed a probabilistic approach based on “Tri-linear Flow” model for unconventional reservoir 
characterization and forecasting. More models dealing with the complex fracture networks have been 
developed (Diaz De Souza et al., 2012; Moinfar et al., 2013). Additionally, with the advancement of the 
computing power and storage capacity of computer hardwares, a variety of machine learning or data 
mining methods can make contributions to production prediction. For example, an expert system built 
upon multi-layer artificial neuron network (ANN) has been developed by Ozdemir et al., (2016) for 
production performance prediction of infill drilling locations. Support vector machine (SVM), as a 
sophisticated method in statistics, works well in pattern recognition such as determining the location of 
sweet spots (Hauge and Hermansen, 2017). 

Although the previous methods would excel, given sufficient data and under appropriate assumptions, 
there are still limitations. For example, numerical history matching requires solvers with strong robustness 
and various types of field data (Oliver and Chen, 2011). These conditions cannot always be satisfied 
because of the complexity of partial differential equations or the scarcity of data in some newly developed 
plays. Artificial neural network may be viable with less refined data, but still, a large amount of data and 
different data types are needed. In order to find out a proper ANN architecture, a significant amount of 
time can be required for model training and cross validation. Additionally, many approaches will only 
give deterministic results without quantifying the uncertainty. 

In this work, we design a simple and elegant approach to forecast production that does not rely on field 
data like permeability, bottom hole pressure, etc. and can estimate the uncertainty of the predicted results. 
First, we fit the production decline curve for existing wells using Duong’s model. Then combined 
universal kriging and co-kriging are adopted to interpolate the decline curve parameters at undrilled sites. 
Finally, a heat map of estimated ultimate recovery (EUR) can be constructed with the interpolated 
parameters, and production forecasts up to an arbitrary number of months in the future can be generated 
for any site in the spatial domain of the play. While we demonstate the approach on the Marcellus shale 
gas play, the methodology can be adopted to any other play, conventional or unconvential, given that 
sufficient regional production data is available and an appropriate decline curve model exists for the 
reservoir type. 
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Methodology 
 

 
Data cleaning.  

Processing raw data is a common step before extracting any interesting information from the data. In 
order to fit Duong’s model into the flow rates that represent the true production feature of the reservoir, 
we suggest cleaning data following these steps in order: 

1. Drop data from vertical wells (keep only directional and horizontal well flow rates); 
2. Order flow rate by increasing date; 
3. Remove values prior to completion date; 
4. Remove any zero values at the beginning (before first positive value) OR remove first value if   

it is positive (may be partial observation); 
5. Remove data before peak production, if any left; 
6. Check for gaps, zero-values, or large changes (as created by shut-in, re-stimulation, etc.) in 

record and only keep data until first instance; 
7. Throw out well if resulting record in less than 24 months long; 
8. Normalized gas rate by perforation interval length, lateral length, or similar. 

 
 

Decline curve analysis. 
Duong (2011) proposed a decline curve model that works well for unconventional reservoirs which 

exhibit long periods of linear flow due to the pressure depletion within fracture networks. It models gas 
rate (q) as a function of time (t) and four parameters (a, m, qi, q∞). The four parameters are determined 
via two stages of sequential ordinary least squares (OLS) regression. First a and m are determined via 
OLS on: 
 

 ln!
q

Gp
"=m ln(t)+a (1) 

 
Then 𝑞& and 𝑞' are found by OLS regression of: 
 

 q=qitam+q∞ (2) 
Where  

 tam=t-mexp !
a

1-m
(t1-m-1)" (3) 

 
Despite catching the physics of unconventional reservoirs, Duong’s model is also advantageous in its 

numerical stability when fitting the curve. Since the four parameters can be obtained by implementing 
OLS on Equation (1) and Equation (2) respectively, they are guaranteed to be the solution of the global 
minimum of the squared error surface. This feature makes the fitting procedure faster than those using 
Arps’ hyperbolic model which is done by nonlinear regression where the global minimum of squared error 
cannot be ensured even after many iterations. 
 
 
Geostatistics method. 

To calculate EUR at undrilled sites, we must first predict the associated parameters based on known 
data points. Although a variety of mathematical interpolation techniques are available, such as spline and 
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polynomial, the spatial correlation among observations is ignored in them. Therefore, methods from 
kriging family that will handle the underlying spatial structures are applied in our work.  

Intuitively, the four parameters (a, m, qi, q∞) for each well should be mutually related because they 
collectively quantify the same decline curve. Meanwhile a more reliable estimation can be obtained by 
utilizing the spatial correlation between different variables (Trangmar et al., 1986). Thus, co-kriging is 
employed in our work, which exploits the cross-correlation between several variables and calculate the 
unknown as a linear combination of them.  

 

 ẑ2(x0)=) λ1iz1(x1i)
n1

i=1

+) λ2jz2*x2j+
n2

j=1

+… (4) 

 
λ1i and λ2j are the weights related to z1 and z2 respectively; n1 and n2 are the number of data points 

used to estimate ẑ2 and x stands for the location. A complete system of co-kriging can be found in some 
other works (Journel and Huijbregts, 1978; McBratney and Webster, 1983; Vauclin et al., 1983). 

While co-kriging takes advantage of multiple parameters, fitting the data, which involve obvious spatial 
trend (external drift), into a deterministic function of locations beforehand can also help estimation 
precision. This idea is conveyed from universal kriging that allows the kriging in the presence of 
unstationarity (Matheron, 1971). Therefore, we should utilize the features of the two kriging methods by 
“filtering out” the external drift from the data first and then co-kriging the associated residual, which leads 
to an indirect but comprehensive hybrid method, “universal co-kriging”. 

 Besides, the scale of the shale play is usually large. So interpolating the parameters over single points 
that are very close to each other can hardly reveal the variation of parameter values. Instead, finding the 
mean and variance of the prediction over the area of a fixed-size block, namely “block kriging”, can save 
people a lot of energy especially when constructing a heat map. 

Since the outputs of kriging contain both mean and (co-)variance of each type of variable, we can 
determine the P10, P50 and P90 EUR by numerically integrating Duong’s decline curve with its 
parameters sampled from a multivariate normal distribution. And thus, the uncertainty of the prediction is 
quantified. 

To better explain this integrated approach, a case study on the Marcellus shale throughout Pennsylvania 
to West Virginia are presented in the following section.  
 
Case Study 
 

 
Data source. 

Monthly production data were obtained for all wells in the Marcellus (11,904 wells out of 15,988 have 
production data, positions are shown in Figure 1), along with various header data for each well 
(geographical coordinates, completion date, etc.). The data have been cleaned by the procedure introduced 
previously. Furthermore, we only used flow rates from horizontal and directional wells (records from 
vertical wells were dropped) since they play a major role in massive unconventional shale gas extraction. 
Besides, normalizing the flow rates with the perforation interval length can lead to an equitable 
comparison between wells. Data from only 5,637 wells finally met all the conditions and thus were later 
used for curve fitting. The data size in each processing stage is summarized in Table 1. 
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Figure 1-Well locations in study area 

Table 1-Well numbers for each filtering stage 

Criteria Number of wells 

Total 15990 

Production data available 11904 

Passed filtering conditions 8527 

Horizontal & directional wells 5637 

 
 
Parameter visualization. 

The distributions of parameters are shown in Figure 2, we found parameters a and m are very likely to 
be subject to normal distributions while qi and q∞ appear to be log-normal type whose log-form is still a 
normal distribution. Since no multi-mode shape could be observed, we did not need to cluster the 
parameters in order to interpolate the unknowns accordingly. 
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Figure 2-Duong’s model parameter distributions  

Additionally, we found the correlations between a & m and log*qi+ & log ,qinf- (or log*q∞+) from the 
scatter-plot matrix in Figure 3. This is an indicator that co-kriging should be used in the further 
interpolation because it makes multiple parameters attribute to the prediciton. 
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External drift.  

To ensure the stationarity of our data before geostatistical modeling, we can fit a background trend 
(external drift) for universal kriging. Because we have m multiple response variables (in this case, the four 
decline curve parameters) and p multiple explanatory variables (in this case, spatial coordinates x and y, 
which are the UTM Eastings and Northings (both in km), respectively, plus an interaction term xy), we fit 
a multivariate multiple linear regression model for the background trend: 
 

 Y=Zβ+ε (5) 
 
where Y is an n	×	m matrix (n being the number of observations, or wells in this application) containing 
each response variable as a column, Z is an n ×	(p+1) matrix containing the explanatory variables plus a 
series of ones (for fitting an intercept) as columns, β is a (p+1)	×	m matrix containing the regression 
coefficients, and ε is an n ×	m matrix of error terms. The regression coefficient estimates, their p-values, 
and the adjusted R2 values are reported in Table 2. 
 

Table 2. Coefficient estimates and their p-values (in parenthesis), as well as the adjusted R2 values, for the multivariate multiple linear 
regression. 

Response Intercept x coefficient y coefficient xy coefficient Adjusted R2 

a -4.4e+00 
(8.9e-03) 

7.0e-03 
(2.0e-02) 

-1.4e-06 
(2.6e-02) 

9.4e-04 
(1.1e-02) 0.04 

Figure 3-Scatter plot matrix for parameters 
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m 8.7e-02 
(9.0e-01) 

3.5e-03 
(4.9e-03) 

-6.9e-07 
(9.7e-03) 

1.9e-04 
(2.0e-01) 0.04 

ln(𝑞&) 
3.9e+01 
(3.5e-25) 

3.8e-03 
(5.7e-01) 

4.4e-07 
(7.6e-01) 

-7.2e-03 
(5.3e-19) 0.19 

ln(𝑞') 3.9e+01 
(4.0e-33) 

-1.6e-02 
(4.8e-03) 

4.5e-06 
(3.5e-04) 

-7.3e-03 
(1.5e-24) 0.16 

 
Table 2 shows that while the adjusted R2 values are fairly low for all four models, the coefficients are 

generally significant (low p-values), albeit also generally low in magnitude. Nevertheless, these models 
have better goodness-of-fit (higher R2) than simpler models with fewer terms, including models of just an 
intercept (mean; as would be used for simple kriging). This criteria of higher R2 is the reason for including 
the interaction term, xy.  
 
 
Fitting linear model of co-regionalization.  

Predictions can be strengthened by using the strong correlation between a and m and between qi and 
q∞ . A linear model of co-regionalization not only models the spatial autocorrelation of individual 
variables, but also the between-variable spatial dependence. Here, we fit a Matern variogram model with 
nugget to all direct and cross variograms shown in Figure 4. 

 
Results and Discussion 
 
 
Block co-kriging with external drift. 

Figure 5 and 6 show the mean and variance respectively of each decline curve parameter. They are 
estimated within 5 km × 5km blocks spanning the domain of the Marcellus. 

Figure 4-Fitted direct and cross variograms 
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Figure 5-Predicted mean values for parameters (Legends in the right corner: left one for point value, right one for grid value) 

 
Figure 6-Variance for each parameter  
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Estimated ultimate recovery. 

Estimated Ultimate Recovery EUR (at P10, P50, and P90 levels) is estimated by drawing a random 
sample of size 1,000 from a multivariate normal distribution for a, m, ln*qi+, and ln*q∞+. The mean values 
and covariance matrix are constructed from the co-kriging predicted values in each block. The samples of 
the log-transformed variables are back transformed via: 
 

 qi= exp*ln*qi++0.50var*ln*qi++1+ (6) 
 

 q∞= exp*ln*q∞++0.50var*ln*q∞++1+ (7) 
 

In order to correct for bias, each sample is then used to calculate a 25-year EUR value: 
 

 EUR[Mscf]	=4 q(t;a,m,qi,q∞ )dt
25×12

1
 (8) 

 
where q	(t;	a,	m,	qi,	q∞ ) represents Duong’s model. Taking the P10th, P50th, and P90th percentiles of the 
resulting EUR vector gives P90, P50, and P10, respectively. These are mapped below: 
 

 
Figure 7 P10 P50 P90 EUR heat maps 

 
 
Validation. 

Leave-one-out cross-validation offers a rational way to test the quality of the universal co-kriging used 
above. In this validation scheme, a single well (with known decline curve parameters) is removed from 
the population of wells, and the universal co-kriging model is re-fit to the remaining data. Prediction using 
this new model is made at the single well site, and the predicted decline curve parameters are compared 
against their known values at the site. Additionally, the predictions of the decline parameters from the 
background trend (Equation (5)) are also recorded for comparison. We repeat this process for 100 
randomly selected wells. This sample size of 100 was chosen as a balance between increasing statistical 
robustness of the analysis of errors and decreasing computational time (this process is computationally 
costly, with these 100 samples taking approximately 32 processor hours). Histograms of the resulting 
percent error of each parameter (difference between the true value and the predicted value divided by the 
true value) are presented in Figure 8. 
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Figure 8. Histograms of percent error for each decline curve parameter and each method: universal co-kriging and backgroud trend. 

Difference of mean hypothesis tests indicate whether the kriged predictions are statistically different 
from the true values. Here, we run one-sample t-tests on the percent error of each parameter to see if the 
mean percent error is significantly different from zero. So the null hypothesis is that the mean percent 
error equals zero and the alternative hypothesis is that it is not equal to zero. The results (estimate of mean 
percent error and associated p-value of the hypothesis test) are reported in Table 3. As the hypothesis tests 
are conducted at the 95% confidence level, any p-values less than 0.05 indicate statistically significant 
difference from zero mean (one can reject the null hypothesis in favor of the alternative). We see in Table 
3 that most p-values for kriging are well above this 0.05 threshold, with ln(qi) being the only exception, 
whereas all p-values for the background trend are below this threshold. In other words, on average the 
universal co-kriging gives predictions that are not significantly different from the true values (except in 
the case of 𝑞&), and has much greater predictive accuracy than the background linear trend model alone, 
which gives predictions that differ strongly from the true values. 
 

Table 3. One-sample t-test results for each decline curve parameter and for both the universal co-kriging predictions and background trend 
predictions.  

Krige Trend 

Parameter Mean p-value Mean p-value 

a -3.62 0.94 107.37 0.003 

m -0.44 0.53 2.32 0.006 

ln(𝑞&) 9.79 7.56E-36 13.97 5.63E-45 

ln(𝑞') -0.10 0.83 4.44 6.35E-09 

 
Besides these hypothesis tests which relate the central tendency and standard deviation of each 

histogram in Figure 8, it is also worth discussing the extremes of the histograms as well. For most cases, 
the percent error rarely exceeds +/- 20%. However, for parameter a we see some outlier cases (four of 
them, for kriging) where percent error can exceed +/- 1000% and get as high as -3800%. These outliers 
can be explained by the very small magnitude of the true a values for these four cases: they are the closest 
to zero. 
 
Summary and Conclusion 
The approach we are proposing in this paper is a combination of decline curve analysis and geostatistic 
method. First, the parameters that describe the natural gas production variation are obtained by curve 
fitting. According to their statistics, we can choose a proper geostatistical method (universal co-kriging) 
to interpolate those parameters for undrilled sites. Finally, we can estimate the EUR and associated decline 
curve with predicted parameters while quantifying the uncertainty at the same time. Without asking for 
extensive types of data, our approach is handy to implement and can provide operators with a good 
reference for early-stage explorations. 
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The heat maps generated in our case study have shown that the promising sites with high EUR are 
mainly located in the middle and northeast of the study area, which is consistent with the actual distribution 
of existing wells in the Marcellus. Although some areas along the southeast boundary of in the EUR heat 
map also appear to be sweet spots, the reliability of their EUR may suffer from the relatively high variance 
of the associated decline curve parameters. Furthermore, the validation not only indicates the superiority 
of the universal co-kriging over the background trend prediction but also shows reasonable percent errors 
in predicted parameters despite the “magnitude” issue for parameter a. 

Lastly, some extensions and modifications may be applied in our future work such as adopting modified 
Duong’s model (Joshi and Lee, 2013) to avoid potentially unrealistic forecasts or employing pattern 
recognition method (unsupervised learning) to further narrow down the range of promising areas based 
upon our current analysis. 
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